Prime rings with involution involving left multipliers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On centralizers of prime rings with involution

‎Let $R$ be a ring with involution $*$‎. ‎An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$‎. ‎The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.

متن کامل

Left Annihilator of Identities Involving Generalized Derivations in Prime Rings

Let $R$ be a prime ring with its Utumi ring of quotients $U$,  $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate} item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=...

متن کامل

on centralizers of prime rings with involution

‎let $r$ be a ring with involution $*$‎. ‎an additive mapping $t:rto r$ is called a left(respectively right) centralizer if $t(xy)=t(x)y$ (respectively $t(xy)=xt(y)$) for all $x,yin r$‎. ‎the purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.

متن کامل

On Generalized Derivations and Commutativity of Prime Rings with Involution

Let R be a ring with involution ′∗′. A map δ of the ring R into itself is called a derivation if δ(xy) = δ(x)y + xδ(y) for all x, y ∈ R. An additive map F : R → R is called a generalized derivation on R if F(xy) = F(x)y + xδ(y) for all x, y ∈ R, Permanent address: Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh202002, India 292 Shakir Ali and Husain Alhazmi whe...

متن کامل

A Note on Jordan Left ∗-Centralizers in Rings with Involution

Let R be a ring with involution. An additive mapping T : R → R is called a left ∗-centralizer (resp. Jordan left ∗-centralizer) if T (xy) = T (x)y∗ (resp. T (x2) = T (x)x∗) holds for all x, y ∈ R, and a reverse left ∗-centralizer if T (xy) = T (y)x∗ holds for all x, y ∈ R. The purpose of this paper is to solve some functional equations involving Jordan left ∗-centralizers on some appropriate su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proyecciones (Antofagasta)

سال: 2020

ISSN: 0717-6279

DOI: 10.22199/issn.0717-6279-2020-02-0021